References
Chernozhukov, Victor, Whitney K Newey, Victor Quintas-Martinez, and
Vasilis Syrgkanis. 2021. “Automatic Debiased Machine Learning via
Riesz Regression.” arXiv Preprint arXiv:2104.14737.
Dı́az, Iván, and Nima S Hejazi. 2020. “Causal Mediation Analysis
for Stochastic Interventions.” Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 82 (3):
661–83.
Hejazi, Nima S, Kara E Rudolph, Mark J van der Laan, and Iván Dı́az.
2022. “Nonparametric Causal Mediation Analysis for Stochastic
Interventional (in) Direct Effects.” Biostatistics (in
press). https://doi.org/10.1093/biostatistics/kxac002.
Kennedy, Edward H. 2018. “Nonparametric Causal Effects Based on
Incremental Propensity Score Interventions.” Journal of the
American Statistical Association, no. just-accepted.
Liu, Richard, Nicholas T Williams, Kara E Rudolph, and Iván Dı́az. 2024.
“General Targeted Machine Learning for Modern Causal Mediation
Analysis.” arXiv Preprint arXiv:2408.14620.
Miles, Caleb H. 2022. “On the Causal Interpretation of Randomized
Interventional Indirect Effects.” arXiv Preprint
arXiv:2203.00245. https://arxiv.org/abs/2203.00245.
Rudolph, Kara E, Shodai Inose, Nicholas T Williams, Katherine L Hoffman,
Sarah E Forrest, Rachael K Ross, Floriana Milazzo, et al. 2025.
“Mediation of Chronic Pain and Disability on Opioid Use Disorder
Risk by Pain Management Practices Among Adult Medicaid Patients,
2016-2019.” American Journal of Epidemiology, kwaf093.
Tchetgen Tchetgen, Eric J, and Tyler J VanderWeele. 2014. “On
Identification of Natural Direct Effects When a Confounder of the
Mediator Is Directly Affected by Exposure.” Epidemiology
25 (2): 282.
van der Laan, Mark J, Eric C Polley, and Alan E Hubbard. 2007.
“Super Learner.” Statistical Applications
in Genetics and Molecular Biology 6 (1).
Vo, Tat-Thang, Nicholas Williams, Richard Liu, Kara E Rudolph, and Ivan
Dıaz. 2024. “Recanting Twins: Addressing Intermediate Confounding
in Mediation Analysis.” arXiv Preprint arXiv:2401.04450.