References
Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., et al. (2018) Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal, 21.
Coyle, J.R., Hejazi, N.S., Malenica, I., Phillips, R.V. and Sofrygin, O. (2022) sl3: Modern Pipelines for Machine Learning and Super Learning. https://github.com/tlverse/sl3.
Dı́az, I. and Hejazi, N.S. (2020) Causal mediation analysis for stochastic interventions. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 82, 661–683.
Dı́az, I., Hejazi, N.S., Rudolph, K.E. and van der Laan, M.J. (2020) Non-parametric efficient causal mediation with intermediate confounders. Biometrika.
Hejazi, N.S., Dı́az, I. and Rudolph, K.E. (2022a) medoutcon: Efficient Natural and Interventional Causal Mediation Analysis.
Hejazi, N.S., Rudolph, K.E. and Dı́az, I. (2022b) medoutcon: Nonparametric efficient causal mediation analysis with machine learning in R. Journal of Open Source Software.
Hejazi, N.S., Rudolph, K.E., Laan, M.J. van der and Dı́az, I. (2022c) Nonparametric causal mediation analysis for stochastic interventional (in) direct effects. Biostatistics, (in press).
Kennedy, E.H. (2018) Nonparametric causal effects based on incremental propensity score interventions. Journal of the American Statistical Association.
Klaassen, C.A. (1987) Consistent estimation of the influence function of locally asymptotically linear estimators. The Annals of Statistics, 1548–1562.
Miles, C.H. (2022) On the causal interpretation of randomized interventional indirect effects. arXiv preprint arXiv:2203.00245.
Phillips, R.V. (2022) Super (machine) learning. Targeted Learning in
R
: Causal Data Science with the tlverse
Software Ecosystem p. Springer.
Rudolph, K., Diaz, I., Hejazi, N., van der Laan, M., Luo, S., Shulman, M., et al. (2020) Explaining differential effects of medication for opioid use disorder using a novel approach incorporating mediating variables. Addiction.
Rudolph, K.E., Goin, D.E., Paksarian, D., Crowder, R., Merikangas, K.R. and Stuart, E.A. (2019) Causal mediation analysis with observational data: Considerations and illustration examining mechanisms linking neighborhood poverty to adolescent substance use. American journal of epidemiology, 188, 598–608.
Tchetgen Tchetgen, E.J. and VanderWeele, T.J. (2014) On identification of natural direct effects when a confounder of the mediator is directly affected by exposure. Epidemiology, 25, 282.
van der Laan, M.J., Coyle, J.R., Hejazi, N.S., Malenica, I., Phillips, R.V. and Hubbard, A.E. (2022) Targeted Learning in
R
: Causal Data Science with the tlverse
Software Ecosystem. CRC Press.
van der Laan, M.J., Polley, E.C. and Hubbard, A.E. (2007) Super Learner. Statistical Applications in Genetics and Molecular Biology, 6.
Zheng, W. and van der Laan, M.J. (2011) Cross-validated targeted minimum-loss-based estimation. Targeted learning pp. 459–474. Springer.