References
Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo,
Christian Hansen, Whitney Newey, and James Robins. 2018.
“Double/Debiased Machine Learning for Treatment and Structural
Parameters.” The Econometrics Journal 21 (1). https://doi.org/10.1111/ectj.12097.
Coyle, Jeremy R, Nima S Hejazi, Ivana Malenica, Rachael V Phillips, and
Oleg Sofrygin. 2022. sl3: Modern
Pipelines for Machine Learning and Super Learning. https://github.com/tlverse/sl3. https://doi.org/10.5281/zenodo.1342293.
Dı́az, Iván, and Nima S Hejazi. 2020. “Causal Mediation Analysis
for Stochastic Interventions.” Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 82 (3):
661–83.
Dı́az, Iván, Nima S Hejazi, Kara E Rudolph, and Mark J van der Laan.
2020. “Non-Parametric Efficient Causal Mediation with Intermediate
Confounders.” Biometrika. https://doi.org/10.1093/biomet/asaa085.
Hejazi, Nima S, Iván Dı́az, and Kara E Rudolph. 2022. “medoutcon: Efficient Natural and Interventional
Causal Mediation Analysis.” https://doi.org/10.5281/zenodo.5809519.
Hejazi, Nima S, Kara E Rudolph, and Iván Dı́az. 2022. “medoutcon: Nonparametric Efficient Causal
Mediation Analysis with Machine Learning in R.”
Journal of Open Source Software. https://doi.org/10.21105/joss.03979.
Hejazi, Nima S, Kara E Rudolph, Mark J van der Laan, and Iván Dı́az.
2022. “Nonparametric Causal Mediation Analysis for Stochastic
Interventional (in) Direct Effects.” Biostatistics (in
press). https://doi.org/10.1093/biostatistics/kxac002.
Kennedy, Edward H. 2018. “Nonparametric Causal Effects Based on
Incremental Propensity Score Interventions.” Journal of the
American Statistical Association, no. just-accepted.
Klaassen, Chris A J. 1987. “Consistent Estimation of the Influence
Function of Locally Asymptotically Linear Estimators.” The
Annals of Statistics, 1548–62.
Miles, Caleb H. 2022. “On the Causal Interpretation of Randomized
Interventional Indirect Effects.” arXiv Preprint
arXiv:2203.00245. https://arxiv.org/abs/2203.00245.
Phillips, Rachael V. 2022. “Super (Machine) Learning.” In
Targeted Learning in
R
: Causal
Data Science with the tlverse
Software
Ecosystem. Springer. https://tlverse.org/tlverse-handbook/sl3.html.
Rudolph, Kara, Ivan Diaz, Nima Hejazi, Mark van der Laan, Sean Luo,
Matisyahu Shulman, Aimee Campbell, John Rotrosen, and Edward Nunes.
2020. “Explaining Differential Effects of Medication for Opioid
Use Disorder Using a Novel Approach Incorporating Mediating
Variables.” Addiction.
Tchetgen Tchetgen, Eric J, and Tyler J VanderWeele. 2014. “On
Identification of Natural Direct Effects When a Confounder of the
Mediator Is Directly Affected by Exposure.” Epidemiology
25 (2): 282.
van der Laan, Mark J, Jeremy R Coyle, Nima S Hejazi, Ivana Malenica,
Rachael V Phillips, and Alan E Hubbard. 2022. Targeted Learning in
R
: Causal Data Science
with the tlverse
Software Ecosystem. CRC Press.
https://tlverse.org/tlverse-handbook.
van der Laan, Mark J, Eric C Polley, and Alan E Hubbard. 2007.
“Super Learner.” Statistical Applications
in Genetics and Molecular Biology 6 (1).
Zheng, Wenjing, and Mark J van der Laan. 2011. “Cross-Validated
Targeted Minimum-Loss-Based Estimation.” In Targeted
Learning, 459–74. Springer.