Print: IPW Estimates of the Causal Effects of Stochatic Shift Interventions

# S3 method for ipw_haldensify
print(x, ..., ci_level = 0.95)

Arguments

x

An object of class ipw_haldensify.

...

Other options (not currently used).

ci_level

A numeric indicating the level of the confidence interval to be computed.

Value

None. Called for the side effect of printing an informative summary of slots of objects of class ipw_haldensify.

Details

The print method for objects of class ipw_haldensify

Examples

# simulate data
n_obs <- 50
W1 <- rbinom(n_obs, 1, 0.6)
W2 <- rbinom(n_obs, 1, 0.2)
A <- rnorm(n_obs, (2 * W1 - W2 - W1 * W2), 2)
Y <- rbinom(n_obs, 1, plogis(3 * A + W1 + W2 - W1 * W2))

# fit the IPW estimator
est_ipw_shift <- ipw_shift(
  W = cbind(W1, W2), A = A, Y = Y,
  delta = 0.5, n_bins = 3L, cv_folds = 2L,
  lambda_seq = exp(seq(-1, -10, length = 100L)),
  # arguments passed to hal9001::fit_hal()
  max_degree = 1,
  # ...continue arguments for IPW
  selector_type = "gcv"
)
#> Warning: Some fit_control arguments are neither default nor glmnet/cv.glmnet arguments: n_folds; 
#> They will be removed from fit_control
#> 2% of observations outside training support...predictions trimmed.
#> Warning: Some fit_control arguments are neither default nor glmnet/cv.glmnet arguments: n_folds; 
#> They will be removed from fit_control
#> Warning: Dropping reduce_basis; only applies if smoothness_orders = 0
print(est_ipw_shift)
#> Counterfactual Mean of Shifted Treatment
#> Intervention: Treatment + 0.5
#> IPW Estimator Criterion: Global CV
#> Estimate: 0.6288
#> Std. Error: 0.0692
#> 95% CI: [0.4865, 0.7517]
#> EIF Mean: -0.0836