Print: Highly Adaptive Lasso Conditional Density Estimates
# S3 method for haldensify
print(x, ...)
An object of class haldensify
.
Other options (not currently used).
None. Called for the side effect of printing an informative summary
of slots of objects of class haldensify
.
The print
method for objects of class haldensify
# simulate data: W ~ U[-4, 4] and A|W ~ N(mu = W, sd = 0.5)
set.seed(429153)
n_train <- 50
w <- runif(n_train, -4, 4)
a <- rnorm(n_train, w, 0.5)
# learn relationship A|W using HAL-based density estimation procedure
haldensify_fit <- haldensify(
A = a, W = w, n_bins = c(3, 5),
lambda_seq = exp(seq(-1, -15, length = 50L)),
max_degree = 3, reduce_basis = 0.1
)
#> Warning: Some fit_control arguments are neither default nor glmnet/cv.glmnet arguments: n_folds;
#> They will be removed from fit_control
print(haldensify_fit)
#> HAL Conditional Density Estimation
#> Number of bins over support of A: 5
#> CV-selected lambda: 0.0038
#> Summary of fitted HAL:
#> coef term
#> 1: 11.56263 (Intercept)
#> 2: -18.73900 [ I(W >= -3.663) ]
#> 3: -17.78439 [ I(W >= -2.872) ]
#> 4: 17.03175 [ I(W >= -3.596) ]
#> 5: -15.83872 [ I(W >= -0.964) ]
#> 6: 14.66159 [ I(bin_id >= 2) ]
#> 7: -14.62246 [ I(W >= -1.353) ]
#> 8: 14.20375 [ I(bin_id >= 3) ]
#> 9: -13.58029 [ I(W >= 1.35) ]
#> 10: -12.26224 [ I(W >= 1.032) ]